
DATA QUALITY 
TESTING

with
LSTM Autoencoder

Name: Shlok Gopalbhai Gondalia
Class: CS498
Email: shlok@rams.colostate.edu
Semester: Spring 2020

1

mailto:shlok@rams.colostate.edu


2

Quality Testing for Time Series Data
Problem with existing approaches
● Can generate false alarms while reporting constraint 

violations
● Use brute force windowing

● It can result in missing constraints if the window 
size is small 

● It can increase the computational complexity of a 
network if the window size is large

● Don’t provide explanations behind the constraint 
violation



3

● Develop an automated data quality test approach 
● Uses an LSTM autoencoder
● Works with both univariate and multivariate time series

● Discover complex constraints within 
● Attributes of a record
● Multiple records in a sequence

● Report as suspicious those sequences/data which violate the 
constraints

Our Goal



4

ADQuaTe3 Overview

Constraint 

Discovery

Groups of

Suspicious Records

Inspected

Records

Trained 

Model

Fault 

Detection

Fault

Inspection

Data Records

Fault 

Interpretation

Groups of

Suspicious Records

+

Explanation

Data 

Preparation

Preprocessed 

Records

Domain Expert Feedback

Windowing takes 

place at this step



5

My Role as the Evaluator
● Evaluate the effectiveness and performance of the approach 

after the Fault Inspection phase
● Compare our approach with the best existing approach 

using the metrics
● F1_T Value 
● Time Taken for the dataset to run
● Growth Rates of F1_T Value

● Use Mutation Analysis to insert artificial faults in datasets to 
evaluate the detection ability of the approaches (Slide 7)



6

F1_T Value

● FP_T => No. of valid time series incorrectly detected
● N_T => No. of actual valid time series
● TP_T => No. of faulty time series detected
● P_T => No. of actual faulty time series



7

Mutation Operators:

● M1 => Add noise
● M2 => Horizontal shift
● M3 => Vertical shift
● M4 => Re-scale
● M5 => Add dense noise

● Seed different types of faults into randomly selected 
records in the datasets

● Faults are based on mutation operators M1 to M5 with 
the goal of violating constraints over the features

Mutation analysis



Datasets Used For Results

● Two different datasets
● Yahoo synthetic servers (univariate) 
● Shuttle dataset (multivariate)

● Ran the mutated datasets using ADQuoTe3 with both
● Brute force windowing
● Autocorrelation windowing

8



9

Completed Tasks

● Improved python script 
testScriptTuningLSTMAutoencoder.py to find the best 
brute force windowing
● Implemented automated brute force window finding
● Before it was done manually

● Wrote python scripts to 
● Generate line plots between F1_T values and no. of 

runs 
● Calculate the total time taken by a dataset to run
● Calculate F1_TGR

● Plotted line graphs for the F1_T value



Modified Python Script
testScriptTuningLSTMAutoencoder.py

● Finds the best window size based on the highest F1_T value
● Loop runs a dataset for a range of window size (10 to 50)
● Prints the result

10



New Python Scripts

● Rewrote the script (testScriptPlotTrend.py ) from last 
semester 
● Generates the line plot for a single original or 

mutated dataset
● Wrote a new script called testScriptMutation.py

● Generates the line plot for a group of mutated 
datasets

● Both these plots are used for comparing F1_T values 
for these two approaches

● Both these plots have same x and y axes 11



testScriptPlotTrend.py

● Creates a line plot from a single dataset using the 
defined window size and auto window size

● Now uses SQL Query to parse the F1_T values of a 
particular dataset from the results

● X-axis shows the number of times the dataset is run
● Y-axis is F1_T Values
● Calculates the time taken by a dataset to run
● Calculates the F1_T growth rate

12



testScriptMutation.py

● Works the same way as testScriptPlotTrend.py with mutation
● Mutations:

● Takes a group of mutated datasets instead of single to plot
● Calculates the average time taken for the group of dataset

● Tells us about the efficiency of each approach
● Calculates the average F1_TGR

● Tells us how fast a model is improving in each run
● Creates a .csv file with Time Taken and F1_TGR values

13



testScriptMutation.py
Sample CSV File

14

M4_Datasets_best_win_size => brute force windowing
M4_Datasets_auto_win_size => autocorrelation windowing

● M4_Datasets ran around 4.7 times faster in 
autocorrelation windowing than in brute force windowing

● For M4_Datasets, model improved around 5.9 times faster 
in autocorrelation windowing than in brute force 
windowing



testScriptPlotTrend.py: Sample Plot

15

New Features:

1) Time Taken

2) F1_TGR

● Shuttle_M2 is 99% effective and is around 6.4 times faster 
for autocorrelation windowing



testScriptMutation.py: Sample Plot

16

● M4_Datasets are around 98% effective in autocorrelation 
windowing



17

Plots help with Visualization

● Clearly see the difference between the two approaches.
● X-axis represents the number of runs and Y-axis 

represents the F1_T values
● It makes it easy to compare each run with the F1_T 

value
● It helps us to see how effective the new approach is in 

finding faulty records



18

Results

● ADQuaTe3 approach is around 98% effective compared to 
the brute force windowing

● We can see that by comparing the blue and the orange 
lines from the graph

● This new approach is also approximately 3 times faster 
than brute force windowing approach

● Growth Rate (F1_TGR) also tells us about the accuracy of this 
approach and how it improves after retraining the learning 
model



Next steps
● Read different research papers related to our work
● Understand the details of the approach and tool 

implementation to interpret the results better

19

Reflection: What can I improve?

● Enhance writing and presentation skills
● Get more in-depth knowledge about ADQuaTe
● Learn how to read a research paper systematically


